Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Rep ; 11(1): 10249, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986446

RESUMO

We have previously shown that the DBA/2J versus AKR/J mouse strain is associated with decreased autophagy-mediated lysosomal hydrolysis of cholesterol esters. Our objective was to determine differences in lysosome function in AKR/J and DBA/2J macrophages, and identify the responsible genes. Using a novel dual-labeled indicator of lysosome function, DBA/2J versus AKR/J bone marrow derived macrophages had significantly decreased lysosome function. We performed quantitative trait loci mapping of lysosome function in bone marrow macrophages from an AKR/J × DBA/2J strain intercross. Four distinct lysosome function loci were identified, which we named macrophage lysosome function modifier (Mlfm) Mlfm1 through Mlfm4. The strongest locus Mlfm1 harbors the Gpnmb gene, which has been shown to recruit autophagy protein light chain 3 to autophagosomes for lysosome fusion. The parental DBA/2J strain has a nonsense variant in Gpnmb. siRNA knockdown of Gpnmb in AKR/J macrophages decreased lysosome function, and Gpnmb deletion through CRISP/Cas9 editing in RAW 264.7 mouse macrophages also demonstrated a similar result. Furthermore, a DBA/2 substrain, called DBA/2J-Gpnmb+/SjJ, contains the wildtype Gpnmb gene, and macrophages from this Gpnmb-preserved DBA/2 substrain exhibited recovered lysosome function. In conclusion, we identified Gpnmb as a causal modifier gene of lysosome function in this strain pair.


Assuntos
Proteínas do Olho/genética , Lisossomos/metabolismo , Macrófagos/fisiologia , Glicoproteínas de Membrana/genética , Animais , Mapeamento Cromossômico/métodos , Proteínas do Olho/metabolismo , Feminino , Genes Modificadores/genética , Lisossomos/genética , Lisossomos/fisiologia , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos DBA , Locos de Características Quantitativas/genética
2.
J Huntingtons Dis ; 10(1): 95-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579867

RESUMO

FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.


Assuntos
Reparo do DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Genes Modificadores/genética , Instabilidade Genômica/genética , Doença de Huntington/genética , Enzimas Multifuncionais/genética , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Humanos
3.
PLoS One ; 15(11): e0239189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253230

RESUMO

Genome wide association studies (GWAS) have identified several genomic loci with candidate modifiers of cystic fibrosis (CF) lung disease, but only a small proportion of the expected genetic contribution is accounted for at these loci. We leveraged expression data from CF cohorts, and Genotype-Tissue Expression (GTEx) reference data sets from multiple human tissues to generate predictive models, which were used to impute transcriptional regulation from genetic variance in our GWAS population. The imputed gene expression was tested for association with CF lung disease severity. By comparing and combining results from alternative approaches, we identified 379 candidate modifier genes. We delved into 52 modifier candidates that showed consensus between approaches, and 28 of them were near known GWAS loci. A number of these genes are implicated in the pathophysiology of CF lung disease (e.g., immunity, infection, inflammation, HLA pathways, glycosylation, and mucociliary clearance) and the CFTR protein biology (e.g., cytoskeleton, microtubule, mitochondrial function, lipid metabolism, endoplasmic reticulum/Golgi, and ubiquitination). Gene set enrichment results are consistent with current knowledge of CF lung disease pathogenesis. HLA Class II genes on chr6, and CEP72, EXOC3, and TPPP near the GWAS peak on chr5 are most consistently associated with CF lung disease severity across the tissues tested. The results help to prioritize genes in the GWAS regions, predict direction of gene expression regulation, and identify new candidate modifiers throughout the genome for potential therapeutic development.


Assuntos
Fibrose Cística/genética , Expressão Gênica/genética , Genes Modificadores/genética , Locos de Características Quantitativas/genética , Estudos de Coortes , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Masculino
4.
Hum Mol Genet ; 29(18): 3044-3053, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32876667

RESUMO

Recent genome-wide association studies of age-at-onset in Huntington's disease (HD) point to distinct modes of potential disease modification: altering the rate of somatic expansion of the HTT CAG repeat or altering the resulting CAG threshold length-triggered toxicity process. Here, we evaluated the mouse orthologs of two HD age-at-onset modifier genes, FAN1 and RRM2B, for an influence on somatic instability of the expanded CAG repeat in Htt CAG knock-in mice. Fan1 knock-out increased somatic expansion of Htt CAG repeats, in the juvenile- and the adult-onset HD ranges, whereas knock-out of Rrm2b did not greatly alter somatic Htt CAG repeat instability. Simultaneous knock-out of Mlh1, the ortholog of a third HD age-at-onset modifier gene (MLH1), which suppresses somatic expansion of the Htt knock-in CAG repeat, blocked the Fan1 knock-out-induced acceleration of somatic CAG expansion. This genetic interaction indicates that functional MLH1 is required for the CAG repeat destabilizing effect of FAN1 loss. Thus, in HD, it is uncertain whether the RRM2B modifier effect on timing of onset may be due to a DNA instability mechanism. In contrast, the FAN1 modifier effects reveal that functional FAN1 acts to suppress somatic CAG repeat expansion, likely in genetic interaction with other DNA instability modifiers whose combined effects can hasten or delay onset and other CAG repeat length-driven phenotypes.


Assuntos
Proteínas de Ciclo Celular/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Enzimas Multifuncionais/genética , Proteína 1 Homóloga a MutL/genética , Ribonucleotídeo Redutases/genética , Idade de Início , Animais , Modelos Animais de Doenças , Genes Modificadores/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doença de Huntington/patologia , Camundongos , Camundongos Knockout , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética
5.
Int J Cancer ; 146(5): 1457-1467, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344264

RESUMO

It remains unclear whether there is a relationship between therapeutic effects of hypomethylating agents (HMAs) and epigenetic modifier gene mutations (EMMs) in patients with cytogenetically intermediate-risk acute myeloid leukemia (IR-AML). Based on targeted-capture sequencing, we retrospectively analyzed the correlation between EMMs and prognosis in 83 IR-AML patients treated with decitabine in combination with cytarabine, aclarubicin hydrochloride and granulocyte colony-stimulating factor (DCAG, n = 35) or "7 + 3" induction regimens (n = 48). In the multivariate analyses, EMM (+) patients did not show any statistically significant difference in remission rates from EMM (-) patients in the DCAG group (p > 0.05), but achieved inferior complete remission (CR; p = 0.03) and overall remission rates (ORR; p = 0.04) after the first course of standard induction regimens (p < 0.05). In the EMM (-) cohort, the DCAG group showed the tendency of adverse total CR (p = 0.06). Besides, DCAG group with EMMs achieved the best survival outcome independent of baseline characteristics, whereas it was opposite in EMM (+) patients receiving standard induction regimens (p < 0.05). Additionally, in the EMM (+) cohort, the survival rate of isolated DCAG group was statistically similar to that of the combination of standard chemotherapies and allogeneic hematopoietic stem cell transplantation (allo-HSCT) (p > 0.40), whereas patients who received only standard regimens had the worst survival rate (0.0%, p < 0.01). It can be concluded that the EMMs might be regarded as the potentially predictive biomarkers of better response to DCAG in IR-AML patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/genética , Genes Modificadores/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Aclarubicina/farmacologia , Aclarubicina/uso terapêutico , Adolescente , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Citarabina/farmacologia , Citarabina/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Decitabina/farmacologia , Decitabina/uso terapêutico , Intervalo Livre de Doença , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Estimativa de Kaplan-Meier , Cariotipagem , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Indução de Remissão/métodos , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
6.
Nature ; 572(7767): 125-130, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31341277

RESUMO

Neuromuscular disorders are often caused by heterogeneous mutations in large, structurally complex genes. Targeting compensatory modifier genes could be beneficial to improve disease phenotypes. Here we report a mutation-independent strategy to upregulate the expression of a disease-modifying gene associated with congenital muscular dystrophy type 1A (MDC1A) using the CRISPR activation system in mice. MDC1A is caused by mutations in LAMA2 that lead to nonfunctional laminin-α2, which compromises the stability of muscle fibres and the myelination of peripheral nerves. Transgenic overexpression of Lama1, which encodes a structurally similar protein called laminin-α1, ameliorates muscle wasting and paralysis in mouse models of MDC1A, demonstrating its importance as a compensatory modifier of the disease1. However, postnatal upregulation of Lama1 is hampered by its large size, which exceeds the packaging capacity of vehicles that are clinically relevant for gene therapy. We modulate expression of Lama1 in the dy2j/dy2j mouse model of MDC1A using an adeno-associated virus (AAV9) carrying a catalytically inactive Cas9 (dCas9), VP64 transactivators and single-guide RNAs that target the Lama1 promoter. When pre-symptomatic mice were treated, Lama1 was upregulated in skeletal muscles and peripheral nerves, which prevented muscle fibrosis and paralysis. However, for many disorders it is important to investigate the therapeutic window and reversibility of symptoms. In muscular dystrophies, it has been hypothesized that fibrotic changes in skeletal muscle are irreversible. However, we show that dystrophic features and disease progression were improved and reversed when the treatment was initiated in symptomatic dy2j/dy2j mice with apparent hindlimb paralysis and muscle fibrosis. Collectively, our data demonstrate the feasibility and therapeutic benefit of CRISPR-dCas9-mediated upregulation of Lama1, which may enable mutation-independent treatment for all patients with MDC1A. This approach has a broad applicability to a variety of disease-modifying genes and could serve as a therapeutic strategy for many inherited and acquired diseases.


Assuntos
Genes Modificadores/genética , Terapia Genética/métodos , Laminina/genética , Laminina/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/terapia , Regulação para Cima , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Progressão da Doença , Feminino , Fibrose/metabolismo , Fibrose/patologia , Edição de Genes , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação
7.
Ann Neurol ; 85(3): 316-330, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30706531

RESUMO

OBJECTIVE: Genetic modifiers in rare disease have long been suspected to contribute to the considerable variance in disease expression, including Charcot-Marie-Tooth disease type 1A (CMT1A). To address this question, the Inherited Neuropathy Consortium collected a large standardized sample of such rare CMT1A patients over a period of 8 years. CMT1A is caused in most patients by a uniformly sized 1.5 Mb duplication event involving the gene PMP22. METHODS: We genotyped DNA samples from 971 CMT1A patients on Illumina BeadChips. Genome-wide analysis was performed in a subset of 330 of these patients, who expressed the extremes of a hallmark symptom: mild and severe foot dorsiflexion strength impairment. SIPA1L2 (signal-induced proliferation-associated 1 like 2), the top identified candidate modifier gene, was expressed in the peripheral nerve, and our functional studies identified and confirmed interacting proteins using coimmunoprecipitation analysis, mass spectrometry, and immunocytochemistry. Chromatin immunoprecipitation and in vitro siRNA experiments were used to analyze gene regulation. RESULTS: We identified significant association of 4 single nucleotide polymorphisms (rs10910527, rs7536385, rs4649265, rs1547740) in SIPA1L2 with foot dorsiflexion strength (p < 1 × 10-7 ). Coimmunoprecipitation and mass spectroscopy studies identified ß-actin and MYH9 as SIPA1L2 binding partners. Furthermore, we show that SIPA1L2 is part of a myelination-associated coexpressed network regulated by the master transcription factor SOX10. Importantly, in vitro knockdown of SIPA1L2 in Schwannoma cells led to a significant reduction of PMP22 expression, hinting at a potential strategy for drug development. INTERPRETATION: SIPA1L2 is a potential genetic modifier of CMT1A phenotypic expressions and offers a new pathway to therapeutic interventions. ANN NEUROL 2019;85:316-330.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Pé/fisiopatologia , Proteínas Ativadoras de GTPase/genética , Genes Modificadores/genética , Debilidade Muscular/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Proteínas da Mielina/genética , Neurilemoma/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Ratos , Índice de Gravidade de Doença , Adulto Jovem
8.
Am J Respir Crit Care Med ; 199(1): 83-98, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107138

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by progressive narrowing of pulmonary arteries, resulting in right heart failure and death. BMPR2 (bone morphogenetic protein receptor type 2) mutations account for most familial PAH forms whereas reduced BMPR2 is present in many idiopathic PAH forms, suggesting dysfunctional BMPR2 signaling to be a key feature of PAH. Modulating BMPR2 signaling is therapeutically promising, yet how BMPR2 is downregulated in PAH is unclear. OBJECTIVES: We intended to identify and pharmaceutically target BMPR2 modifier genes to improve PAH. METHODS: We combined siRNA high-throughput screening of >20,000 genes with a multicohort analysis of publicly available PAH RNA expression data to identify clinically relevant BMPR2 modifiers. After confirming gene dysregulation in tissue from patients with PAH, we determined the functional roles of BMPR2 modifiers in vitro and tested the repurposed drug enzastaurin for its propensity to improve experimental pulmonary hypertension (PH). MEASUREMENTS AND MAIN RESULTS: We discovered FHIT (fragile histidine triad) as a novel BMPR2 modifier. BMPR2 and FHIT expression were reduced in patients with PAH. FHIT reductions were associated with endothelial and smooth muscle cell dysfunction, rescued by enzastaurin through a dual mechanism: upregulation of FHIT as well as miR17-5 repression. Fhit-/- mice had exaggerated hypoxic PH and failed to recover in normoxia. Enzastaurin reversed PH in the Sugen5416/hypoxia/normoxia rat model, by improving right ventricular systolic pressure, right ventricular hypertrophy, cardiac fibrosis, and vascular remodeling. CONCLUSIONS: This study highlights the importance of the novel BMPR2 modifier FHIT in PH and the clinical value of the repurposed drug enzastaurin as a potential novel therapeutic strategy to improve PAH.


Assuntos
Hidrolases Anidrido Ácido/genética , Hipertensão Pulmonar Primária Familiar/genética , Genes Modificadores/genética , Proteínas de Neoplasias/genética , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar/metabolismo , Feminino , Humanos , Indóis/farmacologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
9.
J Neurogenet ; 32(2): 65-77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29644913

RESUMO

Neurofibromatosis type 1 (NF1) is the most common neurogenetic disorder worldwide, caused by mutations in the (NF1) gene. Although NF1 is a single-gene disorder with autosomal-dominant inheritance, its clinical expression is highly variable and unpredictable. NF1 patients have the highest known mutation rate among all human disorders, with no clear genotype-phenotype correlations. Therefore, variations in NF1 mutations may not correlate with the variations in clinical phenotype. Indeed, for the same mutation, some NF1 patients may develop severe clinical symptoms whereas others will develop a mild phenotype. Variations in the mutant NF1 allele itself cannot account for all of the disease variability, indicating a contribution of modifier genes, environmental factors, or their combination. Considering the gene structure and the interaction of neurofibromin protein with cellular components, there are many possible candidate modifier genes. This review aims to provide an overview of the potential modifier genes contributing to NF1 clinical variability.


Assuntos
Genes Modificadores/genética , Estudos de Associação Genética , Neurofibromatose 1/genética , Humanos
10.
Haematologica ; 103(4): 679-687, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29305415

RESUMO

Due to heterogeneous morphological and immunophenotypic features, approximately 50% of peripheral T-cell lymphomas are unclassifiable and categorized as peripheral T-cell lymphomas, not otherwise specified. These conditions have an aggressive course and poor clinical outcome. Identification of actionable biomarkers is urgently needed to develop better therapeutic strategies. Epigenetic alterations play a crucial role in tumor progression. Histone modifications, particularly methylation and acetylation, are generally involved in chromatin state regulation. Here we screened the core set of genes related to histone methylation (KMT2D, SETD2, KMT2A, KDM6A) and acetylation (EP300, CREBBP) and identified 59 somatic mutations in 45 of 125 (36.0%) patients with peripheral T-cell lymphomas, not otherwise specified. Histone modifier gene mutations were associated with inferior progression-free survival time of the patients, irrespective of chemotherapy regimens, but an increased response to the histone deacetylase inhibitor chidamide. In vitro, chidamide significantly inhibited the growth of EP300-mutated T-lymphoma cells and KMT2D-mutated T-lymphoma cells when combined with the hypomethylating agent decitabine. Mechanistically, decitabine acted synergistically with chidamide to enhance the interaction of KMT2D with transcription factor PU.1, regulated H3K4me-associated signaling pathways, and sensitized T-lymphoma cells to chidamide. In a xenograft KMT2D-mutated T-lymphoma model, dual treatment with chidamide and decitabine significantly retarded tumor growth and induced cell apoptosis through modulation of the KMT2D/H3K4me axis. Our work thus contributes to the understanding of aberrant histone modification in peripheral T-cell lymphomas, not otherwise specified and the stratification of a biological subset that can benefit from epigenetic treatment.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Genes Modificadores/genética , Histonas/metabolismo , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/genética , Mutação , Proteínas de Neoplasias/metabolismo , Acetilação , Aminopiridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Linhagem Celular Tumoral , Análise Mutacional de DNA , Decitabina/farmacologia , Xenoenxertos , Histonas/genética , Humanos , Linfoma de Células T Periférico/mortalidade , Metilação , Camundongos , Prognóstico , Análise de Sobrevida , Células Tumorais Cultivadas
11.
J Cyst Fibros ; 17(2): 190-203, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29239766

RESUMO

BACKGROUND: Cystic fibrosis (CF) lung disease severity is highly variable and dependent on several factors including genetic modifiers. Family with sequence similarity 13 member A (FAM13A) has been previously associated with lung function in the general population as well as in several chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), we examined whether FAM13A is a modifier gene of CF lung phenotype. We also studied how FAM13A may contribute to the physiopathological mechanisms associated with CF. METHODS: We investigated the association of FAM13A with lung function in CF French patients (n=1222) by SNP-wise analysis and Versatile Gene Based Association Study. We also analyzed the consequences of FAM13A knockdown in A549 cells and primary bronchial epithelial cells from CF patients. RESULTS: We found that FAM13A is associated with lung function in CF patients. Utilizing lung epithelial A549 cells and primary human bronchial epithelial cells from CF patients we observed that IL-1ß and TGFß reduced FAM13A expression. Knockdown of FAM13A was associated with increased RhoA activity, induction of F-actin stress fibers and regulation of epithelial-mesenchymal transition markers such as E-cadherin, α-smooth muscle actin and vimentin. CONCLUSION: Our data show that FAM13A is a modifier gene of CF lung phenotype regulating RhoA activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition.


Assuntos
Citoesqueleto de Actina/metabolismo , Fibrose Cística/genética , Transição Epitelial-Mesenquimal/fisiologia , Proteínas Ativadoras de GTPase/genética , Genes Modificadores/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Adolescente , Adulto , Criança , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Feminino , França , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
12.
Hum Mol Genet ; 26(19): 3859-3867, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934397

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in HTT. Many clinical characteristics of HD such as age at motor onset are determined largely by the size of HTT CAG repeat. However, emerging evidence strongly supports a role for other genetic factors in modifying the disease pathogenesis driven by mutant huntingtin. A recent genome-wide association analysis to discover genetic modifiers of HD onset age provided initial evidence for modifier loci on chromosomes 8 and 15 and suggestive evidence for a locus on chromosome 3. Here, genotyping of candidate single nucleotide polymorphisms in a cohort of 3,314 additional HD subjects yields independent confirmation of the former two loci and moves the third to genome-wide significance at MLH1, a locus whose mouse orthologue modifies CAG length-dependent phenotypes in a Htt-knock-in mouse model of HD. Both quantitative and dichotomous association analyses implicate a functional variant on ∼32% of chromosomes with the beneficial modifier effect that delays HD motor onset by 0.7 years/allele. Genomic DNA capture and sequencing of a modifier haplotype localize the functional variation to a 78 kb region spanning the 3'end of MLH1 and the 5'end of the neighboring LRRFIP2, and marked by an isoleucine-valine missense variant in MLH1. Analysis of expression Quantitative Trait Loci (eQTLs) provides modest support for altered regulation of MLH1 and LRRFIP2, raising the possibility that the modifier affects regulation of both genes. Finally, polygenic modification score and heritability analyses suggest the existence of additional genetic modifiers, supporting expanded, comprehensive genetic analysis of larger HD datasets.


Assuntos
Proteína Huntingtina/genética , Proteína 1 Homóloga a MutL/genética , Alelos , Animais , Cromossomos Humanos Par 15 , Cromossomos Humanos Par 8 , Modelos Animais de Doenças , Genes Modificadores/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Proteína 1 Homóloga a MutL/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Repetições de Trinucleotídeos
13.
Adv Neurobiol ; 15: 163-190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674981

RESUMO

ALS is a relentless neurodegenerative disease in which motor neurons are the susceptible neuronal population. Their death results in progressive paresis of voluntary and respiratory muscles. The unprecedented rate of discoveries over the last two decades have broadened our knowledge of genetic causes and helped delineate molecular pathways. Here we critically review ALS epidemiology, genetics, pathogenic mechanisms, available animal models, and iPS cell technologies with a focus on their translational therapeutic potential. Despite limited clinical success in treatments to date, the new discoveries detailed here offer new models for uncovering disease mechanisms as well as novel strategies for intervention.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética , Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Demência Frontotemporal/epidemiologia , Demência Frontotemporal/fisiopatologia , Genes Modificadores/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Doença dos Neurônios Motores/epidemiologia , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/fisiopatologia , Pesquisa Translacional Biomédica , Ubiquitinas/genética
14.
Hum Mol Genet ; 25(23): 5059-5068, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27794540

RESUMO

Dysregulation of Fused in Sarcoma (FUS) gene expression is associated with fronto-temporal lobar degeneration (FTLD), and missense mutations in the FUS gene have been identified in patients affected by amyotrophic lateral sclerosis (ALS). However, molecular and cellular defects underlying FUS proteinopathy remain to be elucidated. Here, we examined whether genes important for mitochondrial quality control play a role in FUS proteinopathy. In our genetic screening, Pink1 and Park genes were identified as modifiers of neurodegeneration phenotypes induced by wild type (Wt) or ALS-associated P525L-mutant human FUS. Down-regulating expression of either Pink1 or Parkin genes ameliorated FUS-induced neurodegeneration phenotypes. The protein levels of PINK1 and Parkin were elevated in cells overexpressing FUS. Remarkably, ubiquitinylation of Miro1 protein, a downstream target of the E3 ligase activity of Parkin, was also increased in cells overexpressing FUS protein. In fly motor neurons expressing FUS, both motility and processivity of mitochondrial axonal transport were reduced by expression of either Wt- or P525L-mutant FUS. Finally, down-regulating PINK1 or Parkin partially rescued the locomotive defects and enhanced the survival rate in transgenic flies expressing FUS. Our data indicate that PINK1 and Parkin play an important role in FUS-induced neurodegeneration. This study has uncovered a previously unknown link between FUS proteinopathy and PINK1/Parkin genes, providing new insights into the pathogenesis of FUS proteinopathy.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Drosophila/genética , Degeneração Lobar Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Degeneração Neural/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Transporte Axonal/genética , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/fisiopatologia , Regulação da Expressão Gênica , Genes Modificadores/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação de Sentido Incorreto , Degeneração Neural/patologia , Fenótipo , Proteínas rho de Ligação ao GTP/genética
15.
Exp Anim ; 65(1): 53-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26558540

RESUMO

We previously found that deletion of the multifunctional factor ANP32B (a.k.a. SSP29, APRIL, PAL31, PHAPI2) resulted in a severe but strain-specific defect resulting in perinatal lethality. The difficulty in generating an adult cohort of ANP32B-deficient animals limited our ability to examine adult phenotypes, particularly cancer-related phenotypes. We bred the Anp32b-null allele into the BALB/c and FVB/N genetic background. The BALB/c, but not the FVB/N, background provided sufficient frequency of adult Anp32b-null (Anp32b(-/-)) animals. From these, we found no apparent oncogenic role for this protein in mammary tumorigenesis contrary to what was predicted based on human data. We also found runtism, pathologies in various organ systems, and an unusual clinical chemistry signature in the adult Anp32b(-/-) mice. Intriguingly, genome-wide single-nucleotide polymorphism analysis suggested that our colony retained an unlinked C57BL/6J locus at high frequency. Breeding this locus to homozygosity demonstrated that it had a strong effect on Anp32b(-/-) viability indicating that this locus contains a modifier gene of Anp32b with respect to development. This suggests a functionally important genetic interaction with one of a limited number of candidate genes, foremost among them being the variant histone gene H2afv. Using congenic breeding strategies, we have generated a viable ANP32B-deficient animal in a mostly pure background. We have used this animal to reliably exclude mouse ANP32B as an important oncogene in mammary tumorigenesis. Our further phenotyping strengthens the evidence that ANP32B is a widespread regulator of gene expression. These studies may also impact the choice of subsequent groups with respect to congenic breeding versus de novo zygote targeting strategies for background analyses in mouse genetics.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Camundongos Endogâmicos BALB C/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Alelos , Animais , Animais Congênicos , Cruzamento , Proteínas de Ciclo Celular/deficiência , Feminino , Genes Modificadores/genética , Estudos de Associação Genética , Histonas/genética , Homozigoto , Masculino , Neoplasias Mamárias Animais/genética , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência , Proteínas Nucleares/deficiência , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
J Neurol ; 262(11): 2443-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26233692

RESUMO

GBA mutations are among the most common genetic risk factors for Parkinson disease (PD) worldwide. We aimed to identify genetic modifiers of the age at onset (AAO) in GBA-associated PD. The study included a genome-wide discovery phase, including a cohort of 79 patients with the GBA p.N370S mutation, and candidate validation and replication analyses of 8 SNPs in patients with mild (n = 113) and severe (n = 41) GBA mutations. Genotyping was performed using the Affymetrix human SNP 6.0 array and TaqMan assays. In the genome-wide phase, none of the SNPs passed the genome-wide significance threshold. Eight SNPs were selected for further analysis from the top hits. In all GBA-associated PD patients (n = 153), the BIN1 rs13403026 minor allele was associated with an older AAO (12.4 ± 5.9 years later, p = 0.0001), compared to patients homozygous for the major allele. Furthermore, the AAO was 10.7 ± 6.8 years later in patients with mild GBA mutations, (p = 0.005, validation group), and 17.1 ± 2.5 years later in patients with severe GBA mutations (p = 0.01, replication). Our results suggest that alterations in the BIN1 locus, previously associated with Alzheimer disease, may modify the AAO of GBA-associated PD. More studies in other populations are required to examine the role of BIN1-related variants in GBA-associated PD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Genes Modificadores/genética , Glucosilceramidase/genética , Proteínas Nucleares/genética , Doença de Parkinson/genética , Proteínas Supressoras de Tumor/genética , Idade de Início , Idoso , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença
17.
EBioMedicine ; 2(6): 563-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26285909

RESUMO

BACKGROUND: Acute promyelocytic leukemia (APL) is a model for synergistic target cancer therapy using all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which yields a very high 5-year overall survival (OS) rate of 85 to 90%. Nevertheless, about 15% of APL patients still get early death or relapse. We performed this study to address the possible impact of additional gene mutations on the outcome of APL. METHODS: We included a consecutive series of 266 cases as training group, and then validated the results in a testing group of 269 patients to investigate the potential prognostic gene mutations, including FLT3-ITD or -TKD, N-RAS, C-KIT, NPM1, CEPBA, WT1, ASXL1, DNMT3A, MLL (fusions and PTD), IDH1, IDH2 and TET2. RESULTS: More high-risk patients (50.4%) carried additional mutations, as compared with intermediate- and low-risk ones. The mutations of epigenetic modifier genes were associated with poor prognosis in terms of disease-free survival in both training (HR = 6.761, 95% CI 2.179-20.984; P = 0.001) and validation (HR = 4.026, 95% CI 1.089-14.878; P = 0.037) groups. Sanz risk stratification was associated with CR induction and OS. CONCLUSION: In an era of ATRA/ATO treatment, both molecular markers and clinical parameter based stratification systems should be used as prognostic factors for APL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Arsenicais/uso terapêutico , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Óxidos/uso terapêutico , Tretinoína/uso terapêutico , Adolescente , Adulto , Idoso , Trióxido de Arsênio , Biomarcadores Tumorais/genética , Análise Mutacional de DNA , Intervalo Livre de Doença , Epigênese Genética/genética , Feminino , Genes Modificadores/genética , Humanos , Leucemia Promielocítica Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação/genética , Nucleofosmina , Prognóstico , Resultado do Tratamento , Adulto Jovem
18.
Biochem Biophys Res Commun ; 452(4): 1067-70, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25245290

RESUMO

A high incidence of oncogenic K-ras mutations is observed in lung adenocarcinoma of human cases and carcinogen-induced animal models. The process of oncogenic K-ras-mediated lung adenocarcinogenesis can be dissected into two parts: pre- and post-K-ras mutation. Adoption of transgenic lines containing a flox-K-rasG12V transgene eliminates the use of chemical carcinogens and enables us to study directly crucial events post-K-ras mutation without considering the cellular events involved with oncogenic K-ras mutation, e.g., distribution and metabolism of chemical carcinogens, DNA repair, and somatic recombination by host factors. We generated two mouse strains C57BL/6J-Ryr2(tm1Nobs) and A/J-Ryr2(tm1Nobs) in which K-rasG12V can be transcribed from the cytomegalovirus early enhancer/chicken beta actin promoter in virtually any tissue. Upon K-rasG12V induction in lung epithelial cells by an adenovirus expressing the Cre recombinase, the number of tumors in the C57BL/6J-Ryr2(tm1Nobs/+) mouse line was 12.5 times that in the A/J-Ryr2(tm1Nobs/+) mouse line. Quantitative trait locus (QTL) analysis revealed that new three modifier loci, D3Mit19, D3Mit45 and D11Mit20, were involved in the differential susceptibility between the two lines. In addition, we found that differential expression of the wild-type K-ras gene, which was genetically turn out to be anti-oncogenic activity on K-rasG12V, could not account for the different susceptibility in our two K-rasG12V-mediated lung tumor models. Thus, we provide a genetic system that enables us to explore new downstream modifiers post-K-ras mutation.


Assuntos
Carcinogênese/genética , Genes ras/genética , Predisposição Genética para Doença/genética , Neoplasias Pulmonares/genética , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Proteínas ras/genética , Animais , Linhagem Celular Tumoral , Genes Modificadores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Mutação/genética
19.
Hum Genet ; 133(2): 151-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24057835

RESUMO

The existence of pleiotropy in disorders with multi-organ involvement can suggest therapeutic targets that could ameliorate overall disease severity. Here we assessed pleiotropy of modifier genes in cystic fibrosis (CF). CF, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, affects the lungs, liver, pancreas and intestines. However, modifier genes contribute to variable disease severity across affected organs, even in individuals with the same CFTR genotype. We sought to determine whether SLC26A9, SLC9A3 and SLC6A14, that contribute to meconium ileus in CF, are pleiotropic for other early-affecting CF co-morbidities. In the Canadian CF population, we assessed evidence for pleiotropic effects on (1) pediatric lung disease severity (n = 815), (2) age at first acquisition of Pseudomonas aeruginosa (P. aeruginosa) (n = 730), and (3) prenatal pancreatic damage measured by immunoreactive trypsinogen (n = 126). A multiple-phenotype analytic strategy assessed evidence for pleiotropy in the presence of phenotypic correlation. We required the same alleles to be associated with detrimental effects. SLC26A9 was pleiotropic for meconium ileus and pancreatic damage (p = 0.002 at rs7512462), SLC9A3 for meconium ileus and lung disease (p = 1.5 × 10(-6) at rs17563161), and SLC6A14 for meconium ileus and both lung disease and age at first P. aeruginosa infection (p = 0.0002 and p = 0.006 at rs3788766, respectively). The meconium ileus risk alleles in SLC26A9, SLC9A3 and SLC6A14 are pleiotropic, increasing risk for other early CF co-morbidities. Furthermore, co-morbidities affecting the same organ tended to associate with the same genes. The existence of pleiotropy within this single disorder suggests that complementary therapeutic strategies to augment solute transport will benefit multiple CF-associated tissues.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Genes Modificadores/genética , Pleiotropia Genética/genética , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/fisiologia , Alelos , Sistemas de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Antiporters/genética , Canadá/epidemiologia , Criança , Pré-Escolar , Fibrose Cística/epidemiologia , Fibrose Cística/patologia , Feminino , Genótipo , Humanos , Íleus/genética , Íleus/fisiopatologia , Recém-Nascido , Masculino , Mecônio , Modelos Genéticos , Morbidade , Mutação , Polimorfismo de Nucleotídeo Único , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/patologia , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Transportadores de Sulfato
20.
Endocr Relat Cancer ; 20(6): 875-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080446

RESUMO

Women using menopausal hormone therapy (MHT) are at increased risk of developing breast cancer (BC). To detect genetic modifiers of the association between current use of MHT and BC risk, we conducted a meta-analysis of four genome-wide case-only studies followed by replication in 11 case-control studies. We used a case-only design to assess interactions between single-nucleotide polymorphisms (SNPs) and current MHT use on risk of overall and lobular BC. The discovery stage included 2920 cases (541 lobular) from four genome-wide association studies. The top 1391 SNPs showing P values for interaction (Pint) <3.0 × 10(-3) were selected for replication using pooled case-control data from 11 studies of the Breast Cancer Association Consortium, including 7689 cases (676 lobular) and 9266 controls. Fixed-effects meta-analysis was used to derive combined Pint. No SNP reached genome-wide significance in either the discovery or combined stage. We observed effect modification of current MHT use on overall BC risk by two SNPs on chr13 near POMP (combined Pint≤8.9 × 10(-6)), two SNPs in SLC25A21 (combined Pint≤4.8 × 10(-5)), and three SNPs in PLCG2 (combined Pint≤4.5 × 10(-5)). The association between lobular BC risk was potentially modified by one SNP in TMEFF2 (combined Pint≤2.7 × 10(-5)), one SNP in CD80 (combined Pint≤8.2 × 10(-6)), three SNPs on chr17 near TMEM132E (combined Pint≤2.2×10(-6)), and two SNPs on chr18 near SLC25A52 (combined Pint≤4.6 × 10(-5)). In conclusion, polymorphisms in genes related to solute transportation in mitochondria, transmembrane signaling, and immune cell activation are potentially modifying BC risk associated with current use of MHT. These findings warrant replication in independent studies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/etiologia , Carcinoma Lobular/etiologia , Genes Modificadores/genética , Estudo de Associação Genômica Ampla , Terapia de Reposição Hormonal/efeitos adversos , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Metanálise como Assunto , Prognóstico , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA